Binomial Theorem

Question 1.

The number $(101)^{100} - 1$ is divisible by

- (a) 100
- (b) 1000
- (c) 10000
- (d) All the above

Answer: (d) All the above

Given,
$$(101)^{100} - 1 = (1 + 100)^{100} - 1$$

= $[^{100}C_0 + ^{100}C_1 \times 100 + ^{100}C_2 \times (100)^2 + \dots + ^{100}C_{100} \times (100)^{100}] - 1$
= $1 + [^{100}C_1 \times 100 + ^{100}C_2 \times (100)^2 + \dots + ^{100}C_{100} \times (100)^{100}] - 1$
= $^{100}C_1 \times 100 + ^{100}C_2 \times (100)^2 + \dots + ^{100}C_{100} \times (100)^{100}$
= $100 \times 100 + ^{100}C_2 \times (100)^2 + \dots + ^{100}C_{100} \times (100)^{100}$
= $(100)^2 + ^{100}C_2 \times (100)^2 + \dots + ^{100}C_{100} \times (100)^{100}$
= $(100)^2 [1 + ^{100}C_2 + \dots + ^{100}C_{100} \times (100)^{98}]$

Which is divisible by 100, 1000 and 10000

Question 2.

The value of -1° is

- (a) 1
- (b) -1
- (c) 0
- (d) None of these

Answer: (b) -1

First we find 10

So, 10 = 1

Now, -10 = -1

Question 3.

If the fourth term in the expansion $(ax + 1/x)^n$ is 5/2, then the value of x is

- (a) 4
- (b) 6
- (c) 8
- (d) 5

Answer: (b) 6

Given,
$$T_4 = 5/2$$

$$\Rightarrow$$
 T₃₊₁ = 5/2

$$\Rightarrow {}^{n}C_{3} \times (ax)^{n-3} \times (1/x)^{3} = 5/2$$

$$\Rightarrow {}^{\mathrm{n}}\mathrm{C}_{3} \times \mathrm{a}^{\mathrm{n}\text{-}3} \times \mathrm{x}^{\mathrm{n}\text{-}3} \times (1/\mathrm{x})^{2} = 5/2$$

Clearly, RHS is independent of x,

So,
$$n - 6 = 0$$

$$\Rightarrow$$
 n = 6

Question 4.

The number 111111 1 (91 times) is

- (a) not an odd number
- (b) none of these
- (c) not a prime
- (d) an even number

Answer: (c) not a prime

So, it is not a prime number.

Ouestion 5.

In the expansion of $(a + b)^n$, if n is even then the middle term is

- (a) $(n/2 + 1)^{th}$ term
- (b) $(n/2)^{th}$ term
- (c) nth term
- (d) $(n/2 1)^{th}$ term

Answer: (a) $(n/2 + 1)^{th}$ term

In the expansion of $(a + b)^n$

if n is even then the middle term is $(n/2 + 1)^{th}$ term

Question 6.

The number of terms in the expansion $(2x + 3y - 4z)^n$ is

- (a) n + 1
- (b) n + 3
- (c) $\{(n+1) \times (n+2)\}/2$
- (d) None of these

Answer: (c) $\{(n+1) \times (n+2)\}/2$

Total number of terms in $(2x + 3y - 4z)^n$ is

$$= n+3-1$$
C₃₋₁

$$= n+2C_2$$

$$= \{(n+1) \times (n+2)\}/2$$

Question 7.

If A and B are the coefficient of x^n in the expansion $(1 + x)^{2n}$ and $(1 + x)^{2n-1}$ respectively, then A/B equals

- (a) 1
- (b) 2
- (c) 1/2
- (d) 1/n

Answer: (b) 2

$$A/B = {}^{2n}C_n/{}^{2n-1}C_n$$

$$= \{(2n)!/(n! \times n!)\}/\{(2n-1)!/(n! \times (n-1!))\}$$

$$= \frac{2n(2n-1)!}{(n(n-1)! \times n!)} / \frac{(2n-1)!}{(n! \times (n-1!))}$$

=2

So,
$$A/B = 2$$

Question 8.

The coefficient of y in the expansion of $(y^2 + c/y)^5$ is

- (a) 29c
- (b) 10c
- $(c) 10c^3$
- (d) $20c^2$

Answer: (c) $10c^3$

We have,

$$T_{r+1} = {}^{5}C_{r} \times (y^{2})^{5-r} \times (c/y)^{r}$$

$$\Rightarrow$$
 T_{r+1} = 5 C_r × y^{10-3r} × c^r

For finding the coefficient of y,

$$\Rightarrow 10 - 3r = 1$$

$$\Rightarrow$$
 33r = 9

$$\Rightarrow$$
 r = 3

So, the coefficient of $y = {}^{5}C_{3} \times c^{3}$

$$= 10c^{3}$$

Question 9.

The coefficient of x^{-4} in $(3/2 - 3/x^2)^{10}$ is

- (a) 405/226
- (b) 504/289
- (c) 450/263
- (d) None of these

Answer: (d) None of these

Let x^{-4} occurs in (r + 1)th term.

Now,
$$T_{r+1} = {}^{10}C_r \times (3/2)^{10-r} \times (-3/x^2)^r$$

$$\Rightarrow T_{r+1} = {}^{10}C_r \times (3/2)^{10-r} \times (-3)^r \times (x)^{-2r}$$

Now, we have to find the coefficient of x^{-4}

So,
$$-2r = -4$$

$$\Rightarrow$$
 r = 2

Now, the coefficient of $x^{-4} = {}^{10}C_2 \times (3/2)^{10-2} \times (-3)^2$

$$= {}^{10}\text{C}_2 \times (3/2)^8 \times (-3)^2$$

$$=45 \times (3/2)^8 \times 9$$

$$=(3^{12}\times 5)/2^8$$

Question 10.

If n is a positive integer, then $9^{n+1} - 8n - 9$ is divisible by

- (a) 8
- (b) 16
- (c) 32

Answer: (d) 64

Let
$$n = 1$$
, then

$$9^{n+1} - 8n - 9 = 9^{1+1} - 8 \times 1 - 9 = 9^2 - 8 - 9 = 81 - 17 = 64$$

which is divisible by 64

Let n = 2, then

$$9^{n+1} - 8n - 9 = 9^{2+1} - 8 \times 2 - 9 = 9^3 - 16 - 9 = 729 - 25 = 704 = 11 \times 64$$

which is divisible by 64

So, for any value of n, $9^{n+1} - 8n - 9$ is divisible by 64

Question 11.

The general term of the expansion $(a + b)^n$ is

(a)
$$T_{r+1} = {}^{n}C_{r} \times a^{r} \times b^{r}$$

(b)
$$T_{r+1} = {}^{n}C_{r} \times a^{r} \times b^{n-r}$$

(c)
$$T_{r+1} = {}^{n}C_{r} \times a^{n-r} \times b^{n-r}$$

(d)
$$T_{r+1} = {}^{n}C_{r} \times a^{n-r} \times b^{r}$$

Answer: (d) $T_{r+1} = {}^{n}C_{r} \times a^{n-r} \times b^{r}$

The general term of the expansion $(a + b)^n$ is

$$T_{r+1} = {}^{n}C_{r} \times a^{n-r} \times b^{r}$$

Question 12.

In the expansion of $(a + b)^n$, if n is even then the middle term is

- (a) $(n/2 + 1)^{th}$ term
- (b) $(n/2)^{th}$ term
- (c) nth term
- (d) $(n/2 1)^{th}$ term

Answer: (a) $(n/2 + 1)^{th}$ term

In the expansion of $(a + b)^n$,

if n is even then the middle term is $(n/2 + 1)^{th}$ term

Question 13.

The smallest positive integer for which the statement $3^{n+1} < 4^n$ is true for all

- (a) 4
- (b) 3
- (c) 1
- (d) 2

Answer: (a) 4

Given statement is: $3^{n+1} < 4^n$ is

Let n = 1, then

$$3^{1+1} < 4^1 = 3^2 < 4 = 9 < 4$$
 is false

Let n = 2, then

$$3^{2+1} < 4^2 = 3^3 < 4^2 = 27 < 16$$
 is false

Let n = 3, then

$$3^{3+1} < 4^3 = 3^4 < 4^3 = 81 < 64$$
 is false

Let n = 4, then

$$3^{4+1} < 4^4 = 3^5 < 4^4 = 243 < 256$$
 is true.

So, the smallest positive number is 4

Question 14.

The number of ordered triplets of positive integers which are solution of the equation x + y + z = 100 is

- (a) 4815
- (b) 4851
- (c) 8451
- (d) 8415

Answer: (b) 4851

Given, x + y + z = 100

where $x \ge 1$, $y \ge 1$, $z \ge 1$

Let u = x - 1, v = y - 1, w = z - 1

where $u \ge 0$, $v \ge 0$, $w \ge 0$

Now, equation becomes

u + v + w = 97

So, the total number of solution = ${}^{97+3-1}C_{3-1}$

$$= ^{99}C_2$$

$$= (99 \times 98)/2$$

$$=4851$$

Question 15.

if n is a positive ineger then $2^{3n} - 7n - 1$ is divisible by

- (a) 7
- (b) 9
- (c) 49
- (d) 81

Answer: (c) 49

Given,
$$2^{3n} - 7n - 1 = 2^{3 \times n} - 7n - 1$$

$$=8^{n}-7n-1$$

$$= (1+7)^{n} - 7n - 1$$

$$= \{^{n}C_{0} + ^{n}C_{1} 7 + ^{n}C_{2} 7^{2} + \dots + ^{n}C_{n} 7^{n}\} - 7n - 1$$

$$= \{1+7n+^{n}C_{2} 7^{2} + \dots + ^{n}C_{n} 7^{n}\} - 7n - 1$$

$$= ^{n}C_{2} 7^{2} + \dots + ^{n}C_{n} 7^{n}$$

$$= 49(^{n}C_{2} + \dots + ^{n}C_{n} 7^{n-2})$$
which is divisible by 49
So, $2^{3n} - 7n - 1$ is divisible by 49

Question 16.

The greatest coefficient in the expansion of $(1 + x)^{10}$ is

- (a) 10!/(5!)
- (b) $10!/(5!)^2$
- (c) $10!/(5! \times 4!)^2$
- (d) $10!/(5! \times 4!)$

Answer: (b) $10!/(5!)^2$

The coefficient of xr in the expansion of $(1 + x)^{10}$ is ${}^{10}C_r$ and ${}^{10}C_r$ is maximum for r = 10 / = 5

Hence, the greatest coefficient = ${}^{10}C_5$

$$= 10!/(5!)^2$$

Question 17.

If A and B are the coefficient of xn in the expansion $(1 + x)^{2n}$ and $(1 + x)^{2n-1}$ respectively, then A/B equals

- (a) 1
- (b) 2
- (c) 1/2
- (d) 1/n

Answer: (b) 2

$$\begin{split} A/B &= {}^{2n}C_n/^{2n-1}C_n \\ &= \{(2n)!/(n!\times n!)\}/\{(2n-1)!/(n!\times (n-1!))\} \\ &= \{2n(2n-1)!/(n(n-1)!\times n!)\}/\{(2n-1)!/(n!\times (n-1!))\} \\ &= 2 \\ So, \ A/B &= 2 \end{split}$$

Question 18.

$$(1.1)^{10000}$$
 is 1000

(a) greater than

- (b) less than
- (c) equal to
- (d) None of these

Answer: (a) greater than

Given,
$$(1.1)^{10000} = (1 + 0.1)^{10000}$$

=
$${}^{10000}C_0 + {}^{10000}C_1 \times (0.1) + {}^{10000}C_2 \times (0.1)^2 + \text{other +ve terms}$$

$$= 1 + 10000 \times (0.1) + \text{other +ve terms}$$

$$= 1 + 1000 + other + ve terms$$

> 1000

So, $(1.1)^{10000}$ is greater than 1000

Question 19.

If n is a positive integer, then $(\sqrt{3}+1)^{2n} + (\sqrt{3}-1)^{2n}$ is

- (a) an odd positive integer
- (b) none of these
- (c) an even positive integer
- (d) not an integer

Answer: (c) an even positive integer

Since n is a positive integer, assume n = 1

$$(\sqrt{3}+1)^2+(\sqrt{3}-1)^2$$

=
$$(3 + 2\sqrt{3} + 1) + (3 - 2\sqrt{3} + 1)$$
 {since $(x + y)^2 = x^2 + 2xy + y^2$ }

= 8, which is an even positive number.

Ouestion 20.

if
$$y = 3x + 6x^2 + 10x^3 + \dots$$
 then $x =$

(a)
$$4/3 - \{(1 \times 4)/(3^2 \times 2)\}y^2 + \{(1 \times 4 \times 7)/(3^2 \times 3)\}y^3 - \dots$$

(b)
$$-4/3 + \{(1 \times 4)/(3^2 \times 2)\}y^2 - \{(1 \times 4 \times 7)/(3^2 \times 3)\}y^3 + \dots$$

(c)
$$4/3 + \{(1 \times 4)/(3^2 \times 2)\}y^2 + \{(1 \times 4 \times 7)/(3^2 \times 3)\}y^3 + \dots$$

(d) None of these

Answer: (d) None of these

Given,
$$y = 3x + 6x^2 + 10x^3 + \dots$$

$$\Rightarrow$$
 1 + y = 1 + 3x + 6x² + 10x³ +

$$\Rightarrow 1 + y = (1 - x)^{-3}$$

$$\Rightarrow 1 - x = (1 + y)^{-1/3}$$

$$\Rightarrow$$
 x = 1 - (1 + y)^{-1/3}

$$\Rightarrow x = (1/3)y - \{(1 \times 4)/(3^2 \times 2)\}y^2 + \{(1 \times 4 \times 7)/(3^2 \times 3!)\}y^3 - \dots$$